Search results
Results from the WOW.Com Content Network
Mathematica – provides built in tools for text alignment, pattern matching, clustering and semantic analysis. See Wolfram Language, the programming language of Mathematica. MATLAB offers Text Analytics Toolbox for importing text data, converting it to numeric form for use in machine and deep learning, sentiment analysis and classification ...
To exploit a parallel text, some kind of text alignment identifying equivalent text segments (phrases or sentences) is a prerequisite for analysis. Machine translation algorithms for translating between two languages are often trained using parallel fragments comprising a first-language corpus and a second-language corpus, which is an element ...
Topic analysis consists of two main tasks: topic identification and text segmentation. While the first is a simple classification of a specific text, the latter case implies that a document may contain multiple topics, and the task of computerized text segmentation may be to discover these topics automatically and segment the text accordingly ...
Abstractive summarization methods generate new text that did not exist in the original text. [12] This has been applied mainly for text. Abstractive methods build an internal semantic representation of the original content (often called a language model), and then use this representation to create a summary that is closer to what a human might express.
It is a general-purpose learner and its ability to perform the various tasks was a consequence of its general ability to accurately predict the next item in a sequence, [2] [7] which enabled it to translate texts, answer questions about a topic from a text, summarize passages from a larger text, [7] and generate text output on a level sometimes ...
Sentence extraction is a technique used for automatic summarization of a text. In this shallow approach, statistical heuristics are used to identify the most salient sentences of a text. Sentence extraction is a low-cost approach compared to more knowledge-intensive deeper approaches which require additional knowledge bases such as ontologies ...
[1] Scholars have utilized sentiment analysis to analyse the construction health and safety Tweets (which is called X now). The research revealed that there is a positive correlation between favorites and retweets in terms of sentiment valence. Others have examined the impact of YouTube on the dissemination of construction health and safety ...
[6] Word2vec was created, patented, [7] and published in 2013 by a team of researchers led by Mikolov at Google over two papers. [1] [2] The original paper was rejected by reviewers for ICLR conference 2013. It also took months for the code to be approved for open-sourcing. [8] Other researchers helped analyse and explain the algorithm. [4]