Search results
Results from the WOW.Com Content Network
Free radical polymerization has found applications including the manufacture of polystyrene, thermoplastic block copolymer elastomers, [29] cardiovascular stents, [30] chemical surfactants [31] and lubricants. Block copolymers are used for a wide variety of applications including adhesives, footwear and toys.
Polystyrene (PS) / ˌ p ɒ l i ˈ s t aɪ r iː n / is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. [5] Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a poor barrier to air and water vapor and has a relatively low ...
Polymerization can be performed in large range of solvents (including water), within a wide temperature range, high functional group tolerance and absent of metals for polymerization. As of 2014, the range of commercially available RAFT agents covers close to all the monomer classes that can undergo radical polymerization.
Radical polymerisation of unsaturated monomers is generally propagated by C-radicals. These can be effectively terminated by combining with other radicals to form neutral species and many true inhibitors operate through this mechanism. In the simplest example oxygen can be used as it exists naturally in its triplet state (i.e. it is a diradical).
Living free radical polymerization is a type of living polymerization where the active polymer chain end is a free radical. Several methods exist. Several methods exist. IUPAC recommends [ 1 ] to use the term " reversible-deactivation radical polymerization " instead of "living free radical polymerization", though the two terms are not synonymous.
In polymer chemistry, emulsion polymerization is a type of radical polymerization that usually starts with an emulsion incorporating water, monomers, and surfactants.The most common type of emulsion polymerization is an oil-in-water emulsion, in which droplets of monomer (the oil) are emulsified (with surfactants) in a continuous phase of water.
The distinction between "step-growth polymerization" and "chain-growth polymerization" was introduced by Paul Flory in 1953, and refers to the reaction mechanisms, respectively: [4] by functional groups (step-growth polymerization) by free-radical or ion (chain-growth polymerization)
The nature of chain transfer reactions is currently well understood and is given in standard polymerization textbooks. Since the 1980s, however, a particularly active area of research has been in the various forms of free radical living polymerizations including catalytic chain transfer polymerization, RAFT, and iodine transfer polymerization ...