Search results
Results from the WOW.Com Content Network
Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90 Sr is a radiation hazard. [4] 90 Sr undergoes β − decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an antineutrino, and the yttrium isotope 90 Y, which in turn undergoes β − decay with a half-life of 64 hours and a decay energy ...
90 Sr decays into 90 Y which is a beta emitter with a half-life of 2.67 days. 90 Y is sometimes used for medical purposes and can be obtained either by the neutron activation of stable 89 Y or by using a device similar to a technetium cow. As the half lives of the unstable Yttrium isotopes are low (88
Strontium-90 has a shorter half-life, produces less power, and requires more shielding than plutonium-238, but is cheaper as it is a fission product and is present in a high concentration in nuclear waste and can be relatively easily chemically extracted. Strontium-90 based RTGs have been used to power remote lighthouses. [1]
Radioactive isotope table "lists ALL radioactive nuclei with a half-life greater than 1000 years", incorporated in the list above. The NUBASE2020 evaluation of nuclear physics properties F.G. Kondev et al. 2021 Chinese Phys. C 45 030001. The PDF of this article lists the half-lives of all known radioactives nuclides.
The longest-lived of these isotopes, and the most relevantly studied, are 90 Sr with a half-life of 28.9 years, 85 Sr with a half-life of 64.853 days, and 89 Sr (89 Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes. Strontium-89 is an artificial radioisotope used in ...
Just Words. If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online! By Masque Publishing
The biological half-life of strontium in humans has variously been reported as from 14 to 600 days, [86] [87] 1,000 days, [88] 18 years, [89] 30 years [90] and, at an upper limit, 49 years. [91] The wide-ranging published biological half-life figures are explained by strontium's complex metabolism within the body.
The rubidium–strontium dating method (Rb–Sr) is a radiometric dating technique, used by scientists to determine the age of rocks and minerals from their content of specific isotopes of rubidium (87 Rb) and strontium (87 Sr, 86 Sr). One of the two naturally occurring isotopes of rubidium, 87 Rb, decays to 87 Sr with a half-life of 49.