enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural ...

  4. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero.

  5. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    (L3) at least dimension 2 if it has at least 3 non-collinear points (or two lines, or a line and a point not on the line), (L4) at least dimension 3 if it has at least 4 non-coplanar points. The maximum dimension may also be determined in a similar fashion. For the lowest dimensions, they take on the following forms. A projective space is of:

  6. Antiprism - Wikipedia

    en.wikipedia.org/wiki/Antiprism

    For an antiprism with congruent regular n-gon bases, twisted by an angle of ⁠ 180 / n ⁠ degrees, more regularity is obtained if the bases have the same axis: are coaxial; i.e. (for non-coplanar bases): if the line connecting the base centers is perpendicular to the base planes.

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details).

  8. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.

  9. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    where n 1, n 2, and n 3 are integers and a 1, a 2, and a 3 are three non-coplanar vectors, called primitive vectors. These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only.