Search results
Results from the WOW.Com Content Network
If a Markov chain has a stationary distribution, then it can be converted to a measure-preserving dynamical system: Let the probability space be =, where is the set of all states for the Markov chain. Let the sigma-algebra on the probability space be generated by the cylinder sets.
A Markov chain is a stochastic process defined by a set of states and, for each state, a probability distribution on the states. Starting from an initial state, it follows a sequence of states where each state in the sequence is chosen randomly from the distribution associated with the previous state.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo , which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution .
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]
The distribution can be represented by a random variable describing the time until absorption of an absorbing Markov chain with one absorbing state. Each of the states of the Markov chain represents one of the phases. It has continuous time equivalent in the phase-type distribution.