Search results
Results from the WOW.Com Content Network
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
The radioactive gamma rays are emitted through the body as the natural decaying process of these isotopes takes place. The emissions of the gamma rays are captured by detectors that surround the body. This essentially means that the human is now the source of the radioactivity, rather than the medical imaging devices such as X-ray or CT.
Ultrasound has been used by radiologists and sonographers to image the human body for at least 50 years and has become a widely used diagnostic tool. [36] The technology is relatively inexpensive and portable, especially when compared with other techniques, such as magnetic resonance imaging (MRI) and computed tomography (CT).
A contrast agent (or contrast medium) is a substance used to increase the contrast of structures or fluids within the body in medical imaging. [1] Contrast agents absorb or alter external electromagnetism or ultrasound, which is different from radiopharmaceuticals, which emit radiation themselves.
Unlike X-ray or other physical properties which provide typically only one information, ultrasound provides multiple information of the object for imaging: the attenuation the wave's sound pressure experiences indicate on the object's attenuation coefficient, the time-of-flight of the wave gives speed of sound information, and the scattered ...
uses ultrasound to produce images from within the body; video link: X-ray: uses X-rays to produce images of structures within the body; video link: Contrast media for X-rays: to provide a high contrast image of the details of the viscera under study; e.g. salts of heavy metals, gas like air, radio-opaque dyes, organic iodides, etc ...
Ultrasound duplex scanning can provide additional information that may guide therapeutic decisions. The location and severity of arterial narrowings and occlusions can be identified. The vascular sonographer can map disease in lower-extremity segments with great accuracy, though duplex scanning is more time-consuming than other lower-extremity ...