Search results
Results from the WOW.Com Content Network
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation. There are many expansions in terms of special functions for the Green's function. In the case of a boundary put at infinity with the boundary condition ...
See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative. It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function.
In the mathematics of the nineteenth century, aspects of generalized function theory appeared, for example in the definition of the Green's function, in the Laplace transform, and in Riemann's theory of trigonometric series, which were not necessarily the Fourier series of an integrable function.
In mathematics — specifically, in stochastic analysis — the Green measure is a measure associated to an Itō diffusion.There is an associated Green formula representing suitably smooth functions in terms of the Green measure and first exit times of the diffusion.
In mathematics, influence function is used to mean either: a synonym for a Green's function ; Influence function (statistics) , the effect on an estimator of changing one point of the sample
Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior (in practice often constituted by task performance).