Search results
Results from the WOW.Com Content Network
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it readily generalizes to higher-dimensional problems.
For finding one root, Newton's method and other general iterative methods work generally well. For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB.
For finding real roots of a polynomial, the common strategy is to divide the real line (or an interval of it where root are searched) into disjoint intervals until having at most one root in each interval. Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root.
A root-finding algorithm is a numerical method or algorithm for finding a value x such that f(x) = 0, for a given function f. Here, x is a single real number. Root-finding algorithms are studied in numerical analysis.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.