Search results
Results from the WOW.Com Content Network
Eugene Koonin and others, noting that the archaea share many features with eukaryotes, argue that rudimentary eukaryotic traits such as membrane-lined compartments were acquired before endosymbiosis added mitochondria to the early eukaryotic cell, while the cell wall was lost. In the same way, mitochondrial acquisition must not be regarded as ...
Mitochondria contain their own DNA, which has close structural similarities to bacterial DNA, from which it originated, and which encodes rRNA and tRNA genes that produce RNA which is closer in structure to bacterial RNA than to eukaryote RNA. [34] Some eukaryotes, such as the metamonads Giardia and Trichomonas, and the amoebozoan Pelomyxa ...
The ability of RNA molecules to adopt specific tertiary structures is essential for their biological activity, and results from the single-stranded nature of RNA. In many ways, RNA folding is more highly analogous to the folding of proteins rather than to the highly repetitive folded structure of the DNA double helix. [12]
Chromatin greatly impedes transcription in eukaryotes. Assembly of large multi-protein preinitiation complex is required for promoter-specific initiation. Promoter melting in eukaryotes requires hydrolysis of ATP. As a result, eukaryotic RNA polymerases exhibit a low basal rate of transcription initiation. [42]
The rRNA is the component of the ribosome that hosts translation. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA. Three of the rRNA molecules are synthesized in the nucleolus, and one is synthesized elsewhere. In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome.
Eukaryotic pre-mRNAs have their introns spliced out by spliceosomes made up of small nuclear ribonucleoproteins. [10] [11] In complex eukaryotic cells, one primary transcript is able to prepare large amounts of mature mRNAs due to alternative splicing. Alternative splicing is regulated so that each mature mRNA may encode a multiplicity of proteins.
In archaea and eukaryotes, RNA polymerase contains subunits homologous to each of the five RNA polymerase subunits in bacteria and also contains additional subunits. In archaea and eukaryotes, the functions of the bacterial general transcription factor sigma are performed by multiple general transcription factors that work together. [6]
[51]: 6.1 Second, that mRNA is translated to protein. [51]: 6.2 RNA-coding genes must still go through the first step, but are not translated into protein. [73] The process of producing a biologically functional molecule of either RNA or protein is called gene expression, and the resulting molecule is called a gene product.