enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    There is an interesting difference in the way moment of inertia appears in planar and spatial movement. Planar movement has a single scalar that defines the moment of inertia, while for spatial movement the same calculations yield a 3 × 3 matrix of moments of inertia, called the inertia matrix or inertia tensor. [6] [7]

  3. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  5. Parallel axis theorem - Wikipedia

    en.wikipedia.org/wiki/Parallel_axis_theorem

    The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...

  6. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    One may instead change to a coordinate frame fixed in the rotating body, in which the moment of inertia tensor is constant. Using a reference frame such as that at the center of mass, the frame's position drops out of the equations. In any rotating reference frame, the time derivative must be replaced so that the equation becomes

  7. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The collection of tensors on a vector space and its dual forms a tensor algebra, which allows products of arbitrary tensors. Simple applications of tensors of order 2, which can be represented as a square matrix, can be solved by clever arrangement of transposed vectors and by applying the rules of matrix multiplication, but the tensor product ...

  8. Physical simulation - Wikipedia

    en.wikipedia.org/wiki/Physical_simulation

    The first constraint will be to put each torque in terms of the principal axes. This makes each torque much more difficult to program, but it simplifies our equations significantly. When we apply this constraint, we diagonalize the moment of inertia tensor, which simplifies our three equations into a special set of equations called Euler's ...

  9. Rigid body - Wikipedia

    en.wikipedia.org/wiki/Rigid_body

    When the angular velocity is expressed with respect to a coordinate system coinciding with the principal axes of the body, each component of the angular momentum is a product of a moment of inertia (a principal value of the inertia tensor) times the corresponding component of the angular velocity; the torque is the inertia tensor times the ...