Search results
Results from the WOW.Com Content Network
The W51 nebula in Aquila - one of the largest star factories in the Milky Way (August 25, 2020). Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. [1]
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
Since about half of all known stars form systems of multiple stars and because Jupiter is made of the same elements as the Sun (hydrogen and helium), it has been suggested that the Solar System might have been early in its formation a protostar system with Jupiter being the second but failed protostar, but Jupiter has far too little mass to ...
Massive stars form more rapidly and have shorter lives than less massive stars like the sun. "The formation of high-mass stars has been puzzling astronomers for decades, and so building a picture ...
UT researchers uncovered that stars form through a self-regulatory process — an answer to the mystery scientists have been studying for decades.
Neutron stars are formed by the gravitational collapse of the cores of larger stars. They are the remnant of supernova types Ib , Ic , and II . Neutron stars are expected to have a skin or "atmosphere" of normal matter on the order of a millimeter thick, underneath which they are composed almost entirely of closely packed neutrons called ...
Stars can form orbital systems with other astronomical objects, as in planetary systems and star systems with two or more stars. When two such stars orbit closely, their gravitational interaction can significantly impact their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.
These clouds are gravitationally unstable, and matter coalesces within them to smaller denser clumps, which then rotate, collapse, and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk around the young star. This may give birth to planets in certain circumstances, which are not well known.