enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.

  3. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented.

  4. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    The following is a simple optimization problem: = +subject to and =, where denotes the vector (x 1, x 2).. In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function).

  5. Chance constrained programming - Wikipedia

    en.wikipedia.org/wiki/Chance_constrained_programming

    A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory. [14] For example, dynamic search models are used to study labor-market behavior. [15] A crucial distinction is between deterministic and stochastic models. [16]

  9. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    A commercial optimization solver for linear programming, non-linear programming, mixed integer linear programming, convex quadratic programming, convex quadratically constrained quadratic programming, second-order cone programming and their mixed integer counterparts. AMPL: CPLEX: Popular solver with an API for several programming languages.