Search results
Results from the WOW.Com Content Network
From a standards-based perspective, data quality is: the "degree to which a set of inherent characteristics (quality dimensions) of an object (data) fulfills requirements" [9] [5] "the usefulness, accuracy, and correctness of data for its application" [10]
Inter-method reliability assesses the degree to which test scores are consistent when there is a variation in the methods or instruments used. This allows inter-rater reliability to be ruled out. When dealing with forms, it may be termed parallel-forms reliability. [6]
Use of the term in statistics derives from Sir Ronald Fisher in 1922. [2] Use of the terms consistency and consistent in statistics is restricted to cases where essentially the same procedure can be applied to any number of data items. In complicated applications of statistics, there may be several ways in which the number of data items may grow.
An example of a data-integrity mechanism is the parent-and-child relationship of related records. If a parent record owns one or more related child records all of the referential integrity processes are handled by the database itself, which automatically ensures the accuracy and integrity of the data so that no child record can exist without a parent (also called being orphaned) and that no ...
Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or 'reasonable'. This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to 'reasonable' conclusions ...
Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...
There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]
Generalizability theory, or G theory, is a statistical framework for conceptualizing, investigating, and designing reliable observations. It is used to determine the reliability (i.e., reproducibility) of measurements under specific conditions. It is particularly useful for assessing the reliability of performance assessments.