Search results
Results from the WOW.Com Content Network
A. Morula and B. cross section of a blastula displaying the blastocoel and blastoderm of early animal embryonic development. Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development, the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm.
The division of blastomeres from the zygote allows a single fertile cell to continue to cleave and differentiate until a blastocyst forms. The differentiation of the blastomere allows for the development of two distinct cell populations: the inner cell mass, which becomes the precursor to the embryo, and the trophectoderm, which becomes the precursor to the placenta.
Fish embryos go through a process called mid-blastula transition which is observed around the tenth cell division in some fish species. Once zygotic gene transcription starts, slow cell division begins and cell movements are observable. [4] During this time three cell populations become distinguished. The first population is the yolk syncytial ...
The blastomeres (4-cell stage) are arranged as a solid ball that when reaching a certain size, called a morula, (16-cell stage) takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals. The mammalian blastocyst hatches before implantating into the endometrial lining of the womb.
Germ cells, or gametes, undergo meiosis, while somatic cells will undergo mitosis. After the cell proceeds successfully through the M phase, it may then undergo cell division through cytokinesis. The control of each checkpoint is controlled by cyclin and cyclin-dependent kinases. The progression of interphase is the result of the increased ...
This W3C-invalid cell diagram was created with Inkscape. ... (Featured pictures) ... Diagram of mitosis in animal cells. Other languages:
In embryology, cleavage is the division of cells in the early development of the embryo, following fertilization. [1] The zygotes of many species undergo rapid cell cycles with no significant overall growth, producing a cluster of cells the same size as the original zygote.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.