Search results
Results from the WOW.Com Content Network
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language.In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory.
Löb's theorem A theorem in mathematical logic that provides conditions under which a statement about its own provability is provable, related to Gödel's incompleteness theorems. logic The systematic study of the form of valid inference, including the structures that allow or compel particular conclusions given certain premises. logic gate
Mathematical logic, also called 'logistic', 'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the nineteenth century with the aid of an artificial notation and a rigorously deductive method. [5]
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
First-order logic also satisfies several metalogical theorems that make it amenable to analysis in proof theory, such as the Löwenheim–Skolem theorem and the compactness theorem. First-order logic is the standard for the formalization of mathematics into axioms, and is studied in the foundations of mathematics.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics .
Löb's theorem (mathematical logic) Lochs's theorem (number theory) Looman–Menchoff theorem (complex analysis) Łoś' theorem (model theory) Lovelock's theorem ; Löwenheim–Skolem theorem (mathematical logic) Lucas's theorem (number theory) Lukacs's proportion-sum independence theorem (probability) Lumer–Phillips theorem (semigroup theory)