Search results
Results from the WOW.Com Content Network
The above process can be extended to eliminate all left recursion, by first converting indirect left recursion to direct left recursion on the highest numbered nonterminal in a cycle. Inputs A grammar: a set of nonterminals A 1 , … , A n {\displaystyle A_{1},\ldots ,A_{n}} and their productions
For a general method, see removing left recursion. A simple example for left recursion removal: The following production rule has left recursion on E E -> E '+' T E -> T This rule is nothing but list of Ts separated by '+'. In a regular expression form T ('+' T)*. So the rule could be rewritten as E -> T Z Z -> '+' T Z Z -> ε Now there is no ...
Nonetheless, if there is an indirect left recursion involved, the process of rewriting can be quite complex and challenging. If the time complexity requirements are loosened from linear to superlinear , it is possible to modify the memoization table of a Packrat parser to permit left recursion, without altering the input grammar.
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes. [1] [2]
It is based on the LR parsing technique, which stands for "left-to-right, rightmost derivation in reverse." Formally, a canonical LR parser is an LR(k) parser for k=1, i.e. with a single lookahead terminal. The special attribute of this parser is that any LR(k) grammar with k>1 can be transformed into an LR(1) grammar. [1]
Context-free languages are a category of languages (sometimes termed Chomsky Type 2) which can be matched by a sequence of replacement rules, each of which essentially maps each non-terminal element to a sequence of terminal elements and/or other nonterminal elements.
The C grammar [1] is not LL(1): The bottom part shows a parser that has digested the tokens "int v;main(){" and is about to choose a rule to derive the nonterminal "Stmt". Looking only at the first lookahead token "v", it cannot decide which of both alternatives for "Stmt" to choose, since two input continuations are possible. They can be ...
Derivation: The process of recursive generation of strings from a grammar. Parsing: Finding a valid derivation using an automaton. Parse Tree: The alignment of the grammar to a sequence. An example of a parser for PCFG grammars is the pushdown automaton. The algorithm parses grammar nonterminals from left to right in a stack-like manner.