Search results
Results from the WOW.Com Content Network
Sulfur (16 S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32 S (95.02%), 33 S (0.75%), 34 S (4.21%), and 36 S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas (see silicon burning).
In the atomic symbol of 32 S, the number 32 refers to the mass of each sulfur atom in daltons, the result of the 16 protons and 16 neutrons of 1 dalton each that make up the sulfur nucleus. The three rare stable isotopes of sulfur are 34 S (4.2% of natural sulfur), 33 S (0.75%), and 36 S (0.015%). [4]
This is an accepted version of this page This is the latest accepted revision, reviewed on 19 December 2024. This article is about the chemical element. For other uses, see Sulfur (disambiguation). Chemical element with atomic number 16 (S) Sulfur, 16 S Sulfur Alternative name Sulphur (British spelling) Allotropes see Allotropes of sulfur Appearance Lemon yellow sintered microcrystals Standard ...
Of the 25 known isotopes of sulfur, four are stable. [1] In order of their abundance, those isotopes are 32 S (94.93%), 34 S (4.29%), 33 S (0.76%), and 36 S (0.02%). [2] The δ 34 S value refers to a measure of the ratio of the two most common stable sulfur isotopes, 34 S: 32 S, as measured in a sample against that same ratio as measured in a known reference standard.
At the Commission’s meeting in 1951, it was recognized that the isotopic-abundance variation of sulfur had a significant effect on the internationally accepted value of an atomic weight. In order to indicate the span of atomic-weight values that may apply to sulfur from different natural sources, the value ± 0.003 was attached to the atomic ...
Sulfur isotope fractionations are usually measured in terms of δ 34 S due to its higher abundance (4.25%) compared to the other stable isotopes of sulfur, though δ 33 S is also sometimes measured. Differences in sulfur isotope ratios are thought to exist primarily due to kinetic fractionation during reactions and transformations.
It contains a table of main isotopes and eventually the standard atomic weight. This template is reused in {{Infobox <element>}} as a child Infobox (|child=yes). As of Jan 2023, a 'Main isotope' is conforming MOS:MAINISOTOPE (under construction, see WP:ELEMENTS What is a "Main_isotope"?) Each isotope has its own row, with decay modes:
Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.