enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  3. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  4. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...

  5. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of any infinite ordinal number is an aleph number. Every aleph is the cardinality of some ordinal. The least of these is its initial ordinal. Any set whose cardinality is an aleph is equinumerous with an ordinal and is thus well-orderable. Each finite set is well-orderable, but does not have an aleph as its cardinality.

  6. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    In fact, the cardinality of ℘ (), by definition , is equal to . This can be shown by providing one-to-one mappings in both directions between subsets of a countably infinite set and real numbers, and applying the Cantor–Bernstein–Schroeder theorem according to which two sets with one-to-one mappings in both directions have the same ...

  7. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  8. Cardinal characteristic of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinal_characteristic_of...

    As is standard in set theory, we denote by the least infinite ordinal, which has cardinality ; it may be identified with the set of natural numbers.. A number of cardinal characteristics naturally arise as cardinal invariants for ideals which are closely connected with the structure of the reals, such as the ideal of Lebesgue null sets and the ideal of meagre sets.

  9. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    The category < of sets of cardinality less than and all functions between them is closed under colimits of cardinality less than . κ {\displaystyle \kappa } is a regular ordinal (see below) Crudely speaking, this means that a regular cardinal is one that cannot be broken down into a small number of smaller parts.