Search results
Results from the WOW.Com Content Network
Cr 2 O 3 + 3 CrO 3 → 5 CrO 2 + O 2. Along with many other oxides, it is used as a compound when polishing (also called stropping) the edges of knives, razors, surfaces of optical devices etc. on a piece of leather, balsa, cloth or other material. It is available in powder or wax form, and in this context it is known as "green compound".
Chromium compounds are compounds containing the element chromium (Cr). Chromium is a member of group 6 of the transition metals . The +3 and +6 states occur most commonly within chromium compounds, followed by +2; charges of +1, +4 and +5 for chromium are rare, but do nevertheless occasionally exist.
In acid solution the aquated Cr 3+ ion is produced. Cr 2 O 2− 7 + 14 H + + 6 e − → 2 Cr 3+ + 7 H 2 O ε 0 = 1.33 V. In alkaline solution chromium(III) hydroxide is produced. The redox potential shows that chromates are weaker oxidizing agent in alkaline solution than in acid solution. [6] CrO 2− 4 + 4 H 2 O + 3 e − → Cr(OH) 3 + 5 OH −
A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. [1] [2] [3]: 16–22 Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, [4] and in organic compounds such as alcohols, ethers, and carbonyl compounds.
Chromium(III) oxide, Cr 2 O 3 Chromium dioxide (chromium(IV) oxide), CrO 2 , which includes the hypothetical compound chromium(II) chromate Chromium trioxide (chromium(VI) oxide), CrO 3
[3] Aqueous chromium(VI) oxide peroxide decomposes in a few seconds, turning green as chromium(III) compounds are formed. [4] 2 CrO(O 2) 2 + 7 H 2 O 2 + 6 H + → 2 Cr 3+ + 10 H 2 O + 7 O 2. Stable adducts of the type CrO(O 2) 2 L include those with L = diethyl ether, 1-butanol, ethyl acetate, or amyl acetate. They form by adding a layer of the ...
A ketone compound containing a carbonyl group (C=O) For organic chemistry, a carbonyl group is a functional group with the formula C=O, composed of a carbon atom double-bonded to an oxygen atom, and it is divalent at the C atom.
Chromium trioxide decomposes above 197 °C, liberating oxygen and eventually giving Cr 2 O 3: 4 CrO 3 → 2 Cr 2 O 3 + 3 O 2. It is used in organic synthesis as an oxidant, often as a solution in acetic acid, [9] or acetone in the case of the Jones oxidation. In these oxidations, the Cr(VI) converts primary alcohols to the corresponding ...