Search results
Results from the WOW.Com Content Network
In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.
Nvidia's CUDA is closed-source, whereas AMD ROCm is open source. There is open-source software built on top of the closed-source CUDA, for instance RAPIDS. CUDA is able run on consumer GPUs, whereas ROCm support is mostly offered for professional hardware such as AMD Instinct and AMD Radeon Pro.
Nvidia OptiX (OptiX Application Acceleration Engine) is a ray tracing API that was first developed around 2009. [1] The computations are offloaded to the GPUs through either the low-level or the high-level API introduced with CUDA. CUDA is only available for Nvidia's graphics products. Nvidia OptiX is part of Nvidia GameWorks. OptiX is a high ...
Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later NVIDIA GPUs. It is accompanied by NVENC for video encoding in Nvidia's Video Codec SDK. [2]
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an assembly language represented as American Standard Code for Information Interchange text), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing ...
CuPy supports Nvidia CUDA GPU platform, and AMD ROCm GPU platform starting in v9.0. [ 4 ] [ 5 ] CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in 2017.
CUDA is a parallel computing platform and programming model that higher level languages can use to exploit parallelism. In CUDA, the kernel is executed with the aid of threads. The thread is an abstract entity that represents the execution of the kernel. A kernel is a function that compiles to run on a special device. Multi threaded ...