Search results
Results from the WOW.Com Content Network
The RNA world hypothesis places RNA at center-stage when life originated. The RNA world hypothesis is supported by the observations that ribosomes are ribozymes: [120] [121] the catalytic site is composed of RNA, and proteins hold no major structural role and are of peripheral functional importance. This was confirmed with the deciphering of ...
Woese's dogma is a principle of evolutionary biology first put forth by biophysicist Carl Woese in 1977. It states that the evolution of ribosomal RNA was a necessary precursor to the evolution of modern life forms. [1]
This realization led to the RNA World Hypothesis, a proposal that RNA may have played a critical role in prebiotic evolution at a time before the molecules with more specialized functions (DNA and proteins) came to dominate biological information coding and catalysis.
The RNA Ligase ribozyme was the first of several types of synthetic ribozymes produced by in vitro evolution and selection techniques. They are an important class of ribozymes because they catalyze the assembly of RNA fragments into phosphodiester RNA polymers, a reaction required of all extant nucleic acid polymerases and thought to be ...
This concept is known as the RNA world hypothesis. According to this hypothesis, the ancient RNA world transitioned into the modern cellular world via the evolution of protein synthesis, followed by replacement of many cellular ribozyme catalysts by protein-based enzymes.
In the eocyte hypothesis, the organism at the root of all eocytes may have been a ribocyte of the RNA-world. For cellular DNA and DNA handling, an "out of virus" scenario has been proposed: storing genetic information in DNA may have been an innovation performed by viruses and later handed over to ribocytes twice, once transforming them into bacteria and once transforming them into archaea.
[9] [18] Over time, RNA networks that produce the fittest phenotypes will be more likely to be maintained in a population, contributing to evolution. Studies have shown that RNA processing events have especially been critical with the fast phenotypic evolution of vertebrates—large jumps in phenotype explained by changes in RNA processing ...
In the late 1960s, Orgel proposed that life was based on RNA before it was based on DNA or proteins. His theory included genes based on RNA and RNA enzymes. [17] This view would be developed and shaped into the now widely accepted RNA world hypothesis. Almost thirty years later, Orgel wrote a lengthy review of the RNA World hypothesis. [18]