Search results
Results from the WOW.Com Content Network
In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.
entry M n,n contains the determinant of the original M. If the assumption about principal minors turns out to be false, e.g. if M k −1, k −1 = 0 and some M i , k −1 ≠ 0 ( i = k ,..., n ) then we can exchange the k −1-th row with the i -th row and change the sign of the final answer.
The numbers under the Fano diagrams (the set of lines in the diagram) indicate a set of indices for seven independent products in each case, interpreted as ijk → e i × e j = e k. The multiplication table is recovered from the Fano diagram by following either the straight line connecting any three points, or the circle in the center, with a ...
Here is a brief overview of what Xcas is able to do: [9] [10] Xcas has the ability of a scientific calculator that provides show input and writes pretty print; Xcas also works as a spreadsheet; [11]
In mathematics, Dodgson condensation or method of contractants is a method of computing the determinants of square matrices.It is named for its inventor, Charles Lutwidge Dodgson (better known by his pseudonym, as Lewis Carroll, the popular author), who discovered it in 1866. [1]
where | g | is the absolute value of the determinant of the matrix of scalar coefficients of the metric tensor . These are useful when dealing with divergences and Laplacians (see below). The covariant derivative of a vector field with components is given by: