enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference has been applied in different Bioinformatics applications, including differential gene expression analysis. [38] Bayesian inference is also used in a general cancer risk model, called CIRI (Continuous Individualized Risk Index), where serial measurements are incorporated to update a Bayesian model which is primarily built ...

  3. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    Exploratory analysis of Bayesian models is an adaptation or extension of the exploratory data analysis approach to the needs and peculiarities of Bayesian modeling. In the words of Persi Diaconis: [16] Exploratory data analysis seeks to reveal structure, or simple descriptions in data. We look at numbers or graphs and try to find patterns.

  4. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  5. Recursive Bayesian estimation - Wikipedia

    en.wikipedia.org/wiki/Recursive_Bayesian_estimation

    Sequential Bayesian filtering is the extension of the Bayesian estimation for the case when the observed value changes in time. It is a method to estimate the real value of an observed variable that evolves in time. There are several variations: filtering when estimating the current value given past and current observations, smoothing

  6. Bayes linear statistics - Wikipedia

    en.wikipedia.org/wiki/Bayes_linear_statistics

    Traditional subjective Bayesian analysis is based upon fully specified probability distributions, which are very difficult to specify at the necessary level of detail. Bayes linear analysis attempts to solve this problem by developing theory and practise for using partially specified probability models.

  7. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Bayesian analysis can be done using phenotypic information associated with a genetic condition. When combined with genetic testing, this analysis becomes much more complicated. Cystic fibrosis, for example, can be identified in a fetus with an ultrasound looking for an echogenic bowel, one that appears brighter than normal on a scan.

  8. Bayesian probability - Wikipedia

    en.wikipedia.org/wiki/Bayesian_probability

    Bayesian probability (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation [2] representing a state of knowledge [3] or as quantification of a personal belief.

  9. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    In 2004, an analysis of the Bayesian classification problem showed that there are sound theoretical reasons for the apparently implausible efficacy of naive Bayes classifiers. [4] Still, a comprehensive comparison with other classification algorithms in 2006 showed that Bayes classification is outperformed by other approaches, such as boosted ...