enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  3. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts for organizing and representing data. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector space.

  4. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    A simple tensor (also called a tensor of rank one, elementary tensor or decomposable tensor [1]) is a tensor that can be written as a product of tensors of the form = where a, b, ..., d are nonzero and in V or V ∗ – that is, if the tensor is nonzero and completely factorizable. Every tensor can be expressed as a sum of simple tensors.

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with:

  6. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    A metric tensor at p is a function g p (X p, Y p) which takes as inputs a pair of tangent vectors X p and Y p at p, and produces as an output a real number , so that the following conditions are satisfied: g p is bilinear. A function of two vector arguments is bilinear if it is linear separately in each argument.

  7. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    where and are differentiable tensor fields of arbitrary order, is the unit outward normal to the domain over which the tensor fields are defined, represents a generalized tensor product operator, and is a generalized gradient operator.

  8. Functor - Wikipedia

    en.wikipedia.org/wiki/Functor

    Also note that although the function in this example mapped to the power set of , that need not be the case in general. Dual vector space The map which assigns to every vector space its dual space and to every linear map its dual or transpose is a contravariant functor from the category of all vector spaces over a fixed field to itself.

  9. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    In mathematics and physics, a tensor field is a function assigning a tensor to each point of a region of a mathematical space (typically a Euclidean space or manifold) or of the physical space. Tensor fields are used in differential geometry , algebraic geometry , general relativity , in the analysis of stress and strain in material object, and ...