enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.

  3. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.

  4. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    NP-hard Class of problems which are at least as hard as the hardest problems in NP. Problems that are NP-hard do not have to be elements of NP; indeed, they may not even be decidable. NP-complete Class of decision problems which contains the hardest problems in NP. Each NP-complete problem has to be in NP. NP-easy

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  6. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.

  7. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    A problem is hard for a class of problems C if every problem in C can be polynomial-time reduced to . Thus no problem in C is harder than , since an algorithm for allows us to solve any problem in C with at most polynomial slowdown. Of particular importance, the set of problems that are hard for NP is called the set of NP-hard problems.

  8. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    The clique decision problem is not of practical importance; it is formulated in this way in order to apply the theory of NP-completeness to clique-finding problems. [19] The clique problem and the independent set problem are complementary: a clique in G is an independent set in the complement graph of G and vice versa. [20]

  9. Weak NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Weak_NP-completeness

    An example is the partition problem. Both weak NP-hardness and weak polynomial-time correspond to encoding the input agents in binary coding. If a problem is strongly NP-hard, then it does not even have a pseudo-polynomial time algorithm. It also does not have a fully-polynomial time approximation scheme. An example is the 3-partition problem.