enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    If some variables in the optimal solution have fractional values, we may start a branch and bound type process, in which we recursively solve subproblems in which some of the fractional variables have their values fixed to either zero or one. In each step of an algorithm of this type, we consider a subproblem of the original 0–1 integer ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  4. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    The unconstrained-optimization solver used to solve (P i) and find x i, such as Newton's method. Note that we can use each x i as a starting-point for solving the next problem (P i+1). The main challenge in proving that the method is polytime is that, as the penalty parameter grows, the solution gets near the boundary, and the function becomes ...

  5. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The weak duality theorem says that, for each feasible solution x of the primal and each feasible solution y of the dual: c T x ≤ b T y. In other words, the objective value in each feasible solution of the dual is an upper-bound on the objective value of the primal, and objective value in each feasible solution of the primal is a lower-bound ...

  6. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    There are algorithms for solving an LP in weakly-polynomial time, such as the ellipsoid method; however, they usually return optimal solutions that are not basic. However, Given any optimal solution to the LP, it is easy to find an optimal feasible solution that is also basic. [2]: see also "external links" below.

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2 ...

  8. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm falls within the class of interior-point methods: the current guess for the solution does not follow the boundary of the feasible set as in the simplex method, but moves through the interior of the feasible region, improving the approximation of the optimal solution by a definite fraction with every iteration and ...

  9. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible ...