enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In cgs units, if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per second (g⋅cm/s). Being a vector, momentum has magnitude and direction. For example, a 1 kg model airplane, traveling due north at 1 m/s in straight and level flight, has a momentum of 1 kg⋅m/s due north measured ...

  3. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity. The change in mass is the amount that flows after crossing the boundary for some time duration, not the initial amount of mass at the boundary minus the final amount at the boundary, since the change in mass flowing through the area ...

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics , it places a heavy emphasis on the commonalities between the topics covered.

  5. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The relationship between frequency (proportional to energy) and wavenumber or velocity (proportional to momentum) is called a dispersion relation. Light waves in a vacuum have linear dispersion relation between frequency: ω = c k {\displaystyle \omega =ck} .

  6. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  8. Mean free path - Wikipedia

    en.wikipedia.org/wiki/Mean_free_path

    In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a result of one or more successive collisions with other particles.

  9. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    where is the distribution of the density of charge, mass, or whatever quantity is being considered. More complex forms take into account the angular relationships between the distance and the physical quantity, but the above equations capture the essential feature of a moment, namely the existence of an underlying r n ρ ( r ) {\displaystyle r ...