enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  3. x̅ and R chart - Wikipedia

    en.wikipedia.org/wiki/X̅_and_R_chart

    In statistical process control (SPC), the ¯ and R chart is a type of scheme, popularly known as control chart, used to monitor the mean and range of a normally distributed variables simultaneously, when samples are collected at regular intervals from a business or industrial process. [1]

  4. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    The goal of a forecaster is to maximize the score and for the score to be as large as possible, and −0.22 is indeed larger than −1.6. If one treats the truth or falsity of the prediction as a variable x with value 1 or 0 respectively, and the expressed probability as p , then one can write the logarithmic scoring rule as x ln( p ) + (1 − ...

  5. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In 2016, the American Statistical Association (ASA) made a formal statement that "p-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone" and that "a p-value, or statistical significance, does not measure the size of an effect or the importance of a ...

  6. p-chart - Wikipedia

    en.wikipedia.org/wiki/P-chart

    The p-chart only accommodates "pass"/"fail"-type inspection as determined by one or more go-no go gauges or tests, effectively applying the specifications to the data before they are plotted on the chart. Other types of control charts display the magnitude of the quality characteristic under study, making troubleshooting possible directly from ...

  7. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Suppose we wanted to predict the weight of a dog based on a certain set of characteristics of each dog. One way to do that is to explain the distribution of weights by dividing the dog population into groups based on those characteristics. A successful grouping will split dogs such that (a) each group has a low variance of dog weights (meaning ...

  8. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...

  9. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    6. Calculate the p-value Compare the computed Hosmer–Lemeshow statistic to a chi-squared distribution with Q − 2 degrees of freedom to calculate the p-value. There are Q = 10 groups in the caffeine example, giving 10 – 2 = 8 degrees of freedom. The p-value for a chi-squared statistic of 17.103 with df = 8 is p = 0.029. The p-value is ...