Search results
Results from the WOW.Com Content Network
This happens in two distinct steps: first the MRX complex recruits the Sae2 protein, and these two proteins trim back the 5' ends on either side of the break to create short 3' overhangs of single-strand DNA; in the second step, 5'→3' resection is continued by the Sgs1 helicase and the Exo1 and Dna2 nucleases.
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal (or lateral) gene ...
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Central dogma depicting transcription from DNA code to RNA code to the proteins in the second step covering the production of protein. Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a ...
The two pathways for homologous recombination in eukaryotes, showing the formation and resolution of Holliday junctions. The Holliday junction is a key intermediate in homologous recombination, a biological process that increases genetic diversity by shifting genes between two chromosomes, as well as site-specific recombination events involving integrases.
Away from DNA, the Mcm2-7 proteins form a single heterohexamer and are loaded in an inactive form at origins of DNA replication as a head-to-head double hexamers around double-stranded DNA. [ 106 ] [ 107 ] The Mcm proteins are recruited to replication origins then redistributed throughout the genomic DNA during S phase, indicative of their ...
Multiple sequence alignment (MSA) is the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. These alignments are used to infer evolutionary relationships via phylogenetic analysis and can highlight homologous features between sequences.
In genetic engineering, recombination can also refer to artificial and deliberate recombination of disparate pieces of DNA, often from different organisms, creating what is called recombinant DNA. A prime example of such a use of genetic recombination is gene targeting , which can be used to add, delete or otherwise change an organism's genes.