Search results
Results from the WOW.Com Content Network
Hydrostatic head is also used as a measure of the waterproofing of a fabric, commonly in clothing and equipment used for outdoor recreation.It is measured as a length (typically millimetres), representing the maximum height of a vertical column of water that could be placed on top of the fabric before water started seeping through the weave.
The burst pressure of this casing is 5020 psi. 1.2 sg brine produces a pressure gradient of 0.52 psi.ft −1 (see Well kill for the mathematical basics of hydrostatic heads). Therefore, the column of brine produces a pressure difference between top and bottom of 2116 psi.
Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli's principle, the total energy at a given point in a fluid is the kinetic energy associated with the speed of flow of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an ...
The three terms are used to define the state of a closed system of an incompressible, constant-density fluid. When the dynamic pressure is divided by the product of fluid density and acceleration due to gravity, g, the result is called velocity head, which is used in head equations like the one used for pressure head and hydraulic head.
In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.
If the fluid in the annulus is heavier, it will exert more pressure downward and will flow into the string, pushing some of the lighter fluid out of the string, causing a flow at the surface. The fluid level then falls in the annulus, equalizing pressures. Given a difference in the hydrostatic pressures, the fluid will try to reach a balanced ...
The volumetric discharge through the stream-bed can be calculated if the difference in hydraulic head is known: = where is the volumetric discharge through the stream-bed ([L 3 T −1]; m 3 s −1 or ft 3 day −1) is the hydraulic head of the river (elevation stage)