Search results
Results from the WOW.Com Content Network
This electric force is conventionally called the electrostatic force or Coulomb force. [2] Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb .
Similarly, the interaction in the electric field between atoms is the force responsible for chemical bonding that result in molecules. The electric field is defined as a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal test charge at rest at that point.
The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and ...
In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, [1] [2] denoted ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf [3] by converting other forms of energy into electrical energy. [3]
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation. The electromagnetic force is the second strongest of the four known fundamental forces and has unlimited range. [17] All other forces, known as non-fundamental forces. [18] (e.g., friction, contact forces) are derived from the four ...
On a conductor, a surface charge will experience a force in the presence of an electric field. This force is the average of the discontinuous electric field at the surface charge. This average in terms of the field just outside the surface amounts to: =,
Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those
The Lorentz force law gives the force upon a body with charge due to electric and magnetic fields: = (+), where is the electromagnetic force, is the electric field at the body's location, is the magnetic field, and is the velocity of the particle.