enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  3. Dopplergraph - Wikipedia

    en.wikipedia.org/wiki/Dopplergraph

    The word "dopplergraph" is a combination of the words doppler and photograph. Dopplergraphs are two-dimensional records of variations in the doppler shift in light intensity. Dopplergraphs do not need to be a record of the shift of visible light, but of any radiated wave, which includes electromagnetic waves and acoustic waves. [1]

  4. List of satellite pass predictors - Wikipedia

    en.wikipedia.org/wiki/List_of_satellite_pass...

    Ground track example from Heavens-Above.An observer in Sicily can see the International Space Station when it enters the circle at 9:26 p.m. The observer would see a bright object appear in the northwest, which would move across the sky to a point almost overhead, where it disappears from view, in the space of three minutes.

  5. Doppler radio direction finding - Wikipedia

    en.wikipedia.org/wiki/Doppler_radio_direction...

    The magnitude of the shift is a function of the wavelength of the signal and the angular velocity of the antenna: S = ⁠ r W / λ ⁠ Where S is the Doppler shift in frequency (Hz), r is the radius of the circle, W is the angular velocity in radians per second, λ is the target wavelength and c is the speed of light in meters per second. [13]

  6. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.

  7. Doppler radar - Wikipedia

    en.wikipedia.org/wiki/Doppler_radar

    Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]

  8. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  9. Bistatic radar - Wikipedia

    en.wikipedia.org/wiki/Bistatic_radar

    Bistatic Doppler shift is a specific example of the Doppler effect that is observed by a radar or sonar system with a separated transmitter and receiver. The Doppler shift is due to the component of motion of the object in the direction of the transmitter, plus the component of motion of the object in the direction of the receiver.