enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data integrity - Wikipedia

    en.wikipedia.org/wiki/Data_integrity

    An example of a data-integrity mechanism is the parent-and-child relationship of related records. If a parent record owns one or more related child records all of the referential integrity processes are handled by the database itself, which automatically ensures the accuracy and integrity of the data so that no child record can exist without a parent (also called being orphaned) and that no ...

  3. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  4. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10] As such, it compares estimates of pre- and post-test probability.

  5. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    The relationship between sensitivity and specificity, as well as the performance of the classifier, can be visualized and studied using the Receiver Operating Characteristic (ROC) curve. In theory, sensitivity and specificity are independent in the sense that it is possible to achieve 100% in both (such as in the red/blue ball example given above).

  6. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    Indexing and classification methods to assist with information retrieval have a long history dating back to the earliest libraries and collections however systematic evaluation of their effectiveness began in earnest in the 1950s with the rapid expansion in research production across military, government and education and the introduction of computerised catalogues.

  7. Data quality - Wikipedia

    en.wikipedia.org/wiki/Data_quality

    All data sourced from a third party to organization's internal teams may undergo accuracy (DQ) check against the third party data. These DQ check results are valuable when administered on data that made multiple hops after the point of entry of that data but before that data becomes authorized or stored for enterprise intelligence.

  8. Data validation - Wikipedia

    en.wikipedia.org/wiki/Data_validation

    Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]