Search results
Results from the WOW.Com Content Network
In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion ...
An octahedron may then form with a radius ratio greater than or equal to 0.414, but as the ratio rises above 0.732, a cubic geometry becomes more stable. This explains why Na + in NaCl with a radius ratio of 0.55 has octahedral coordination, whereas Cs + in CsCl with a radius ratio of 0.93 has cubic coordination. [5]
Ionic radius, r ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice .
According to the radius ratio rule, this structure is more likely to be formed if the cation is somewhat smaller than the anion (a cation/anion radius ratio of 0.414 to 0.732). The interatomic distance (distance between cation and anion, or half the unit cell length a ) in some rock-salt-structure crystals are: 2.3 Å (2.3 × 10 −10 m) for ...
Critical radius is the minimum particle size from which an aggregate is thermodynamically stable. In other words, it is the lowest radius formed by atoms or molecules clustering together (in a gas , liquid or solid matrix) before a new phase inclusion (a bubble, a droplet or a solid particle) is viable and begins to grow.
Each corner atom touches the center atom. A line that is drawn from one corner of the cube through the center and to the other corner passes through 4r, where r is the radius of an atom. By geometry, the length of the diagonal is a √ 3. Therefore, the length of each side of the BCC structure can be related to the radius of the atom by
Ionic radius: the nominal radius of the ions of an element in a specific ionization state, deduced from the spacing of atomic nuclei in crystalline salts that include that ion. In principle, the spacing between two adjacent oppositely charged ions (the length of the ionic bond between them) should equal the sum of their ionic radii.
The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the ...