Search results
Results from the WOW.Com Content Network
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ). We can convert 2D points to homogeneous coordinates by defining them as (x, y, 1). Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0.
Let P be the point with coordinates (x 0, y 0) and let the given line have equation ax + by + c = 0. Also, let Q = ( x 1 , y 1 ) be any point on this line and n the vector ( a , b ) starting at point Q .
Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where
a coordinate line, a linear coordinate dimension; In the context of determining parallelism in Euclidean geometry, a transversal is a line that intersects two other lines that may or not be parallel to each other. For more general algebraic curves, lines could also be: i-secant lines, meeting the curve in i points counted without multiplicity, or
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...
The intersection of a line and a plane in general position in three dimensions is a point. Commonly a line in space is represented parametrically ((), (), ()) and a plane by an equation + + =. Inserting the parameter representation into the equation yields the linear equation
In common usage, the abscissa refers to the x coordinate and the ordinate refers to the y coordinate of a standard two-dimensional graph. [1] [2]The distance of a point from the y axis, scaled with the x axis, is called the abscissa or x coordinate of the point.