Search results
Results from the WOW.Com Content Network
The coordinates depend on the presence of an origin and reference line on it. Then, given an arbitrary line its coordinates are found from the intersection with the reference line. The distance s from the origin to the intersection and the angle θ of inclination between the two lines are used:
Given a coordinate system, if one of the coordinates of a point varies while the other coordinates are held constant, then the resulting curve is called a coordinate curve. If a coordinate curve is a straight line , it is called a coordinate line .
Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]
The two numbers, in that chosen order, are the Cartesian coordinates of P. The reverse construction allows one to determine the point P given its coordinates. The first and second coordinates are called the abscissa and the ordinate of P, respectively; and the point where the axes meet is called the origin of the coordinate system.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
a coordinate line, a linear coordinate dimension; In the context of determining parallelism in Euclidean geometry, a transversal is a line that intersects two other lines that may or not be parallel to each other. For more general algebraic curves, lines could also be: i-secant lines, meeting the curve in i points counted without multiplicity, or
The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line. The distance of an arbitrary point p to this line is given by
The distance between any two points on the real line is the absolute value of the numerical difference of their coordinates, their absolute difference. Thus if p {\displaystyle p} and q {\displaystyle q} are two points on the real line, then the distance between them is given by: [ 1 ]