Search results
Results from the WOW.Com Content Network
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...
The metre, kilogram, second system of units, also known more briefly as MKS units or the MKS system, [1] [2] [3] is a physical system of measurement based on the metre, kilogram, and second (MKS) as base units. Distances are described in terms of metres, mass in terms of kilograms and time in seconds.
The fermi is a unit of distance used in nuclear physics equal to 1 fm. [9] The angstrom (symbol Å) is a unit of distance used in chemistry and atomic physics equal to 100 pm. The micron (μ) is a unit of distance equal to one micrometre (1 μm). The basic module (M) is a unit of distance equal to one hundred millimetres (100 mm).
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
Product of a force and the perpendicular distance of the force from the point about which it is exerted newton-metre (N⋅m) L 2 M T −2: bivector (or pseudovector in 3D) Velocity: v →: Moved distance per unit time: the first time derivative of position m/s L T −1: vector Wavevector: k →
newton meter squared per kilogram squared (N⋅m 2 /kg 2) shear modulus: pascal (Pa) or newton per square meter (N/m 2) acceleration due to gravity: meters per second squared (m/s 2), or equivalently, newtons per kilogram (N/kg) magnetic field strength: ampere per meter (A/m) Hamiltonian: joule (J)
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
[citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.806 65 m/s 2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth). [2] That is, it is the weight of a kilogram under standard gravity. One kilogram-force is defined as ...