enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas can equivalently be written as < < < (=) = for k = 1, 2, ..., n (the indices i k are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots.

  3. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Surprisingly, this bound of the product of the absolute values larger than 1 of the roots is not much larger than the best bounds of one root that have been given above for a single root. This bound is even exactly equal to one of the bounds that are obtained using Hölder's inequality .

  4. Conjugate (square roots) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(square_roots)

    As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The sum of a root and its conjugate is twice its real part. These three sums are the three real roots of the cubic polynomial +, and the primitive seventh roots of unity are , where r runs over the roots of the above polynomial. As for every cubic polynomial, these roots may be expressed in terms of square and cube roots.

  6. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.

  7. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    The sum, difference and product of algebraic integers are again algebraic integers, which means that the algebraic integers form a ring. The name algebraic integer comes from the fact that the only rational numbers that are algebraic integers are the integers, and because the algebraic integers in any number field are in many ways analogous to ...

  8. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    Evaluated at the roots of a monic polynomial P in one variable, ... (that is, the sum of all distinct products of k distinct variables), so ...

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.