enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...

  4. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into R n. A local embedding theorem is much simpler and can be proved using the implicit function theorem of advanced calculus in a coordinate neighborhood of the manifold. The proof of the global embedding theorem relies on Nash's implicit function ...

  5. Lyapunov–Schmidt reduction - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Schmidt_reduction

    In mathematics, the Lyapunov–Schmidt reduction or Lyapunov–Schmidt construction is used to study solutions to nonlinear equations in the case when the implicit function theorem does not work. It permits the reduction of infinite-dimensional equations in Banach spaces to finite-dimensional equations.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.

  8. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .

  9. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    (Note the proof is quite similar to the proof of the implicit function theorem and, in fact, the implicit function theorem can be also used instead.) More generally, the theorem shows that if a smooth map f : P → E {\displaystyle f:P\to E} is transversal to a submanifold M ⊂ E {\displaystyle M\subset E} , then the pre-image f − 1 ( M ...