enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]

  3. Detailed balance - Wikipedia

    en.wikipedia.org/wiki/Detailed_balance

    A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...

  4. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    Reversible Markov chains are common in Markov chain Monte Carlo (MCMC) approaches because the detailed balance equation for a desired distribution π necessarily implies that the Markov chain has been constructed so that π is a steady-state distribution.

  5. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    In probability theory and statistics, a Markov chain or Markov process is a stochastic process describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

  6. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.

  7. Kolmogorov equations - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_equations

    In the context of a continuous-time Markov process with jumps, see Kolmogorov equations (Markov jump process). In particular, in natural sciences the forward equation is also known as master equation. In the context of a diffusion process, for the backward Kolmogorov equations see Kolmogorov backward equations (diffusion).

  8. Time reversibility - Wikipedia

    en.wikipedia.org/wiki/Time_reversibility

    Markov processes can only be reversible if their stationary distributions have the property of detailed balance: (=, + =) = (=, + =). Kolmogorov's criterion defines the condition for a Markov chain or continuous-time Markov chain to be time-reversible.

  9. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.