enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logical equivalence - Wikipedia

    en.wikipedia.org/wiki/Logical_equivalence

    In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...

  3. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.

  4. Contraposition - Wikipedia

    en.wikipedia.org/wiki/Contraposition

    Using our example, this is rendered as "If Socrates is not human, then Socrates is not a man." This statement is said to be contraposed to the original and is logically equivalent to it. Due to their logical equivalence, stating one effectively states the other; when one is true, the other is also true, and when one is false, the other is also ...

  5. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...

  6. Negation - Wikipedia

    en.wikipedia.org/wiki/Negation

    Within a system of classical logic, double negation, that is, the negation of the negation of a proposition , is logically equivalent to . Expressed in symbolic terms, . In intuitionistic logic, a proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation.

  7. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal." The converse of that statement is "If I am mortal, then I am a human," which is not necessarily true.

  8. Double negation - Wikipedia

    en.wikipedia.org/wiki/Double_negation

    In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

  9. Glossary of logic - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_logic

    A logical principle that states that a conditional statement is logically equivalent to its contrapositive, transforming "If P, then Q" into "If not Q, then not P". contrapositive The statement resulting from swapping the antecedent and consequent of a conditional statement and negating both, maintaining logical equivalence. contrary