Search results
Results from the WOW.Com Content Network
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
material biconditional (material equivalence) if and only if, iff, xnor propositional logic, Boolean algebra: is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
A logical principle that states that a conditional statement is logically equivalent to its contrapositive, transforming "If P, then Q" into "If not Q, then not P". contrapositive The statement resulting from swapping the antecedent and consequent of a conditional statement and negating both, maintaining logical equivalence. contrary
Using our example, this is rendered as "If Socrates is not human, then Socrates is not a man." This statement is said to be contraposed to the original and is logically equivalent to it. Due to their logical equivalence, stating one effectively states the other; when one is true, the other is also true, and when one is false, the other is also ...
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
In some logical calculi (notably, in classical logic), certain essentially different compound statements are logically equivalent. A less trivial example of a redundancy is the classical equivalence between ¬ p ∨ q {\displaystyle \neg p\vee q} and p → q {\displaystyle p\to q} .