Ad
related to: squared polynomial algebra calculator math soup
Search results
Results from the WOW.Com Content Network
At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree. In the case of a non-square-free polynomial, if neither a nor b is a multiple root of p, then V(a) − V(b) is the number of distinct real roots of P.
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.
Budan's may provide a real-root-isolation algorithm for a square-free polynomial (a polynomial without multiple root): from the coefficients of polynomial, one may compute an upper bound M of the absolute values of the roots and a lower bound m on the absolute values of the differences of two roots (see Properties of polynomial roots).
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
which cannot be represented as a sum of squares of other polynomials. In 1888, Hilbert showed that every non-negative homogeneous polynomial in n variables and degree 2d can be represented as sum of squares of other polynomials if and only if either (a) n = 2 or (b) 2d = 2 or (c) n = 3 and 2d = 4. [2]
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
Ad
related to: squared polynomial algebra calculator math soup