Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...
In non-relativistic quantum mechanics, the probability current j of the wave function Ψ of a particle of mass m in one dimension is defined as [2] = = {} = {}, where ℏ {\displaystyle \hbar } is the reduced Planck constant ;
where ρ is the charge density, which can (and often does) depend on time and position, ε 0 is the electric constant, μ 0 is the magnetic constant, and J is the current per unit area, also a function of time and position.
Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2 ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The density of the linear momentum of the electromagnetic field is S/c 2 where S is the magnitude of the Poynting vector and c is the speed of light in free space. The radiation pressure exerted by an electromagnetic wave on the surface of a target is given by P r a d = S c . {\displaystyle P_{\mathrm {rad} }={\frac {\langle S\rangle }{\mathrm ...
For negative charges, the sign of the current density is opposite to the velocity of the charges. [2]: 749 In SI units, current density (symbol: j) is expressed in the SI base units of amperes per square metre. [4]: 22 In linear materials such as metals, and under low frequencies, the current density across the conductor surface is uniform.