enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement

  3. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...

  4. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    ! says “there exists exactly one such that has property .” Only ∀ {\displaystyle \forall } and ∃ {\displaystyle \exists } are part of formal logic. ∃ ! x {\displaystyle \exists !x} P ( x ) {\displaystyle P(x)} is an abbreviation for

  5. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    There exists an x such that ... For at least one x, .... Keywords for uniqueness quantification include: For exactly one natural number x, ... There is one and only one x such that .... Further, x may be replaced by a pronoun. For example, For every natural number, its product with 2 equals to its sum with itself. Some natural number is prime.

  6. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    If E is a logical predicate, means that there exists at least one value of x for which E is true. 2. Often used in plain text as an abbreviation of "there exists". ∃! Denotes uniqueness quantification, that is, ! means "there exists exactly one x such that P (is true)".

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    In the theory of partial orders with one relation symbol ≤, one could define s = t to be an abbreviation for s ≤ t t ≤ s. In set theory with one relation ∈, one may define s = t to be an abbreviation for ∀x (s ∈ x ↔ t ∈ x) ∀x (x ∈ s ↔ x ∈ t). This definition of equality then automatically satisfies the axioms for equality.

  8. Monism - Wikipedia

    en.wikipedia.org/wiki/Monism

    Substance monism posits that only one kind of substance exists, although many things may be made up of this substance, e.g., matter or mind. Dual-aspect monism is the view that the mental and the physical are two aspects of, or perspectives on, the same substance.

  9. Axiom of empty set - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_empty_set

    An empty set exists. This formula is a theorem and considered true in every version of set theory. The only controversy is over how it should be justified: by making it an axiom; by deriving it from a set-existence axiom (or logic) and the axiom of separation; by deriving it from the axiom of infinity; or some other method.