Search results
Results from the WOW.Com Content Network
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent.
A uniform space is compact if and only if it is complete and totally bounded. Every Tychonoff space has a Stone–Čech compactification. Mathematical logic. Gödel's completeness theorem for first-order logic: every consistent set of first-order sentences has a completion. That is, every consistent set of first-order sentences can be extended ...
In order to provide a model of probability, these elements must satisfy probability axioms. In the example of the throw of a standard die, The sample space is typically the set {,,,,,} where each element in the set is a label which represents the outcome of the die landing on that label.
In the case of model theory these axioms have the form of first-order sentences. The formalism of universal algebra is much more restrictive; essentially it only allows first-order sentences that have the form of universally quantified equations between terms, e.g. x y (x + y = y + x). One consequence is that the choice of a signature is more ...
A sample space is usually denoted using set notation, and the possible ordered outcomes, or sample points, [5] are listed as elements in the set. It is common to refer to a sample space by the labels S, Ω, or U (for "universal set"). The elements of a sample space may be numbers, words, letters, or symbols.
In this example, both sentences happen to have the common form () for some individual , in the first sentence the value of the variable x is "Socrates", and in the second sentence it is "Plato". Due to the ability to speak about non-logical individuals along with the original logical connectives, first-order logic includes propositional logic.
There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges.
A subset of a vector space is called a cone if for all real >,.A cone is called pointed if it contains the origin. A cone is convex if and only if +. The intersection of any non-empty family of cones (resp. convex cones) is again a cone (resp. convex cone); the same is true of the union of an increasing (under set inclusion) family of cones (resp. convex cones).