enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The transverse Doppler effect (TDE) may refer to (a) the nominal blueshift predicted by special relativity that occurs when the emitter and receiver are at their points of closest approach; or (b) the nominal redshift predicted by special relativity when the receiver sees the emitter as being at its closest approach. [6]

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    This lower frequency from the moving source can be attributed to the time dilation effect and is often called the transverse Doppler effect and was predicted by relativity. In 2010 time dilation was observed at speeds of less than 10 metres per second using optical atomic clocks connected by 75 metres of optical fiber. [26]

  4. Experimental testing of time dilation - Wikipedia

    en.wikipedia.org/wiki/Experimental_testing_of...

    The emergence of the muons is caused by the collision of cosmic rays with the upper atmosphere, after which the muons reach Earth. The probability that muons can reach the Earth depends on their half-life, which itself is modified by the relativistic corrections of two quantities: a) the mean lifetime of muons and b) the length between the upper and lower atmosphere (at Earth's surface).

  5. Bondi k-calculus - Wikipedia

    en.wikipedia.org/wiki/Bondi_k-calculus

    In the k-calculus methodology, distances are measured using radar.An observer sends a radar pulse towards a target and receives an echo from it. The radar pulse (which travels at , the speed of light) travels a total distance, there and back, that is twice the distance to the target, and takes time , where and are times recorded by the observer's clock at transmission and reception of the ...

  6. File:Transverse Doppler effect scenarios 7.svg - Wikipedia

    en.wikipedia.org/wiki/File:Transverse_Doppler...

    English: Source and receiver are placed on opposite ends of a rotor. Both special and general relativity require that the receiver should observe no Doppler shift. Surprisingly, this obvious result has been disputed, with some claiming that emitter and absorber may be considered to be in uniform relative motion, and that a special relativity requires a transverse Doppler shift to be

  7. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    It would appear that the classical analysis predicts that the receiver detects no Doppler shift. Due to subtleties in the analysis, that expectation is not necessarily true. Nevertheless, when appropriately defined, transverse Doppler shift is a relativistic effect that has no classical analog. The subtleties are these: [45]: 541–543

  8. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    The transverse Doppler effect is one of the main novel predictions of the special theory of relativity. Classically, one might expect that if source and receiver are moving transversely with respect to each other with no longitudinal component to their relative motions, that there should be no Doppler shift in the light arriving at the receiver.

  9. Kennedy–Thorndike experiment - Wikipedia

    en.wikipedia.org/wiki/Kennedy–Thorndike_experiment

    The time it takes light to traverse back-and-forth along the Lorentz–contracted length of the longitudinal arm is given by: = + = / + / + = / = where T 1 is the travel time in direction of motion, T 2 in the opposite direction, v is the velocity component with respect to the luminiferous aether, c is the speed of light, and L L the length of the longitudinal interferometer arm.