enow.com Web Search

  1. Ads

    related to: hypersurface geometry formula chart images printable worksheets adults

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1 , which is embedded in an ambient space of dimension n , generally a Euclidean space , an affine space or a projective space . [ 1 ]

  3. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  4. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  5. Adjunction formula - Wikipedia

    en.wikipedia.org/wiki/Adjunction_formula

    In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

  6. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    Similarly, if M is a hypersurface in a Riemannian manifold N, then the principal curvatures are the eigenvalues of its second-fundamental form. If k 1 , ..., k n are the n principal curvatures at a point p ∈ M and X 1 , ..., X n are corresponding orthonormal eigenvectors (principal directions), then the sectional curvature of M at p is given by

  7. Complete intersection - Wikipedia

    en.wikipedia.org/wiki/Complete_intersection

    Geometrically, each F i defines a hypersurface; the intersection of these hypersurfaces should be V. The intersection of n − m hypersurfaces will always have dimension at least m, assuming that the field of scalars is an algebraically closed field such as the complex numbers.

  8. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .

  9. Geometric genus - Wikipedia

    en.wikipedia.org/wiki/Geometric_genus

    The geometric genus can be defined for non-singular complex projective varieties and more generally for complex manifolds as the Hodge number h n,0 (equal to h 0,n by Serre duality), that is, the dimension of the canonical linear system plus one.

  1. Ads

    related to: hypersurface geometry formula chart images printable worksheets adults