enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    In order to find the weak form of the Navier–Stokes equations, firstly, consider the momentum equation [20] + + = multiply it for a test function , defined in a suitable space , and integrate both members with respect to the domain : [20] + + = Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' theorem ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The derivation of the Navier–Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of ...

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    This article summarizes equations in the theory of fluid mechanics. Definitions ... Momentum current density j p = ... 3000 Solved Problems in Physics, ...

  5. Non-dimensionalization and scaling of the Navier–Stokes equations

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  6. Shell balance - Wikipedia

    en.wikipedia.org/wiki/Shell_Balance

    Momentum from Shear Stress goes into the shell at y and leaves the system at y + Δy. Shear stress = τ yx, area = A, momentum = τ yx A. Find momentum from the flow. Momentum flows into the system at x = 0 and out at x = L. The flow is steady state. Therefore, the momentum flow at x = 0 is equal to the moment of flow at x = L. Therefore, these ...

  7. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    The way of obtaining a velocity field satisfying the above, is to compute a pressure which when substituted into the momentum equation leads to the desired correction of a preliminary computed intermediate velocity. Applying the divergence operator to the compressible momentum equation yields

  8. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems. [1]

  9. Immersed boundary method - Wikipedia

    en.wikipedia.org/wiki/Immersed_Boundary_Method

    Any existing fluid solver can be coupled to a solver for the fiber equations to solve the Immersed Boundary equations. Variants of this basic approach have been applied to simulate a wide variety of mechanical systems involving elastic structures which interact with fluid flows.