Search results
Results from the WOW.Com Content Network
Calcium carbonate saturation can be determined using the following equation: Ω = ([Ca 2+][CO 3 2−])/K sp. where the numerator ([Ca 2+][CO 3 2−]) denotes the concentration of calcium and carbonate ions and the denominator (K sp) refers to the mineral (solid) phase stoichiometric solubility product of calcium carbonate. [8]
The carbonate compensation depth (CCD) is the depth, in the oceans, at which the rate of supply of calcium carbonates matches the rate of solvation. That is, solvation 'compensates' supply. Below the CCD solvation is faster, so that carbonate particles dissolve and the carbonate shells of animals are not preserved. Carbonate particles cannot ...
Specifically, it is the deep waters that are undersaturated with calcium carbonate primarily because its solubility increases strongly with increasing pressure and salinity and decreasing temperature. As the atmospheric concentration of carbon dioxide continues to increase, the CCD can be expected to decrease in depth, as the ocean's acidity ...
Biogenic calcium carbonate is formed when marine organisms, such as coccolithophores, corals, pteropods, and other mollusks transform calcium ions and bicarbonate into shells and exoskeletons of calcite or aragonite, both forms of calcium carbonate. [57] This is the dominant sink for dissolved calcium in the ocean. [114]
An aragonite sea contains aragonite and high-magnesium calcite as the primary inorganic calcium carbonate precipitates. The reason lies in the highly hydrated Mg 2+ divalent ion , the second most abundant cation in seawater after Na + , known to be a strong inhibitor of CaCO 3 crystallization at the nucleation stage.
Calcite, or calcium carbonate, chemical formula CaCO 3, is formed from water, H 2 O, and carbon dioxide, CO 2, dissolved in the water. The carbon dioxide provides two of the oxygen atoms in the calcite. The calcium must rob the third from the water. The isotope ratio in the calcite is therefore the same, after compensation, as the ratio in the ...
Shell growth in estuaries is an aspect of marine biology that has attracted a number of scientific research studies. Many groups of marine organisms produce calcified exoskeletons, commonly known as shells, hard calcium carbonate structures which the organisms rely on for various specialized structural and defensive purposes.
Foraminifera shells are composed of calcium carbonate (CaCO 3) and are found in many common geological environments. The ratio of 18 O to 16 O in the shell is used to indirectly determine the temperature of the surrounding water at the time the shell was formed. The ratio varies slightly depending on the temperature of the surrounding water, as ...